logo Sam Foreman
  • Home
  • Slides
  • Quarto Example
  • Source Code
  1. Content
  2. Slides
  • Content
    • Slides
    • Posts
      • Quarto Basics
  • Index
    • Examples 1
      • Demo
        • Quarto Basics

On this page

  • Recent Talks

Edit this page

Report an issue

Slides

Sam Foreman

Recent Talks

  • Large Scale Training, at Introduction to AI-driven Science on Supercomputers: A Student Training Series, November 2022

  • Hyperparameter Management, at 2022 ALCF Simulation, Data, and Learning Workshop, October 2022

  • Statistical Learning, at ATPESC 2022, August 2022 📕 accompanying notebook

  • Scientific Data Science: An Emerging Symbiosis, at Argonne National Laboratory, May 2022

  • Machine Learning in HEP, at UNC Greensboro, March 2022

  • Accelerated Sampling Methods for Lattice Gauge Theory, at BNL-HET & RBRC Joint Workshop “DWQ @ 25”, Dec 2021

  • Training Topological Samplers for Lattice Gauge Theory, ML4HEP, on and off the Lattice @ ECT* Trento, Sep 2021

  • l2hmc-qcd at the MIT Lattice Group Seminar, 2021

  • Deep Learning HMC for Improved Gauge Generation to the Machine Learning Techniques in Lattice QCD Workshop, 2021

  • Machine Learning for Lattice QCD at the University of Iowa, 2020

  • Machine learning inspired analysis of the Ising model transition to Lattice, 2018

  • Machine Learning Analysis of Ising Worms at Brookhaven National Laboratory, 2017

Citation

BibTeX citation:
@online{foreman,
  author = {Foreman, Sam},
  title = {Slides},
  url = {https://87ceaf89-db22-41c3-aef1-dd7e61e39a82.netlify.app//content/slides.html},
  langid = {en}
}
For attribution, please cite this work as:
Foreman, Sam. n.d. “Slides.” https://87ceaf89-db22-41c3-aef1-dd7e61e39a82.netlify.app//content/slides.html.
Source Code
---
title: "Slides"
title-block-style: none
date-modified: 2023-05-12
---

# Recent Talks

- [**Large Scale Training**](https://saforem2.github.io/ai4sci-large-scale-training), at [Introduction to AI-driven Science on Supercomputers: A Student Training Series](https://github.com/argonne-lcf/ai-science-training-series), November 2022
    <iframe src="https://saforem2.github.io/ai4sci-large-scale-training/#" title="Large Scale Training" width="66%" align="center" height="400" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="margin-top:1em;margin-bottom:1em;border:none;align:center;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Hyperparameter Management**](https://saforem2.github.io/hparam-management-sdl2022/), at [2022 ALCF Simulation, Data, and Learning Workshop](https://www.alcf.anl.gov/events/2022-alcf-simulation-data-and-learning-workshop), October 2022 
    <iframe src="https://saforem2.github.io/hparam-management-sdl2022" title="Hyperparameter Management" width="66%" align="center" height="400" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="margin-top:1em;margin-bottom:1em;border:none;align:center;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Statistical Learning**](https://saforem2.github.io/ATPESC-StatisticalLearning), at [ATPESC 2022](https://extremecomputingtraining.anl.gov/), August 2022 [📕 accompanying notebook](https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/00_statisticalLearning/src/atpesc/notebooks/statistical_learning.ipynb)
  <iframe src="https://saforem2.github.io/ATPESC-StatisticalLearning/#/" title="Statistical Learning" width="66%" align="center" height="400" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="margin-top:1em;margin-bottom:1em;border:none;align:center;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Scientific Data Science: An Emerging Symbiosis**](https://saforem2.github.io/anl-job-talk/), at Argonne National Laboratory, May 2022
  <iframe src="https://saforem2.github.io/anl-job-talk" title="Scientific Data Science" width="66%" align="center" height="400" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="margin-top:1em;margin-bottom:1em;border:none;align:center;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Machine Learning in HEP**](https://saforem2.github.io/physicsSeminar), at UNC Greensboro, March 2022
  <iframe src="https://saforem2.github.io/physicsSeminar" title="Machine Learning in HEP" width="66%" align="center" height="300" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="border:none;margin-top:1em;margin-bottom:1em;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Accelerated Sampling Methods for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc-dwq25/), at [_BNL-HET  & RBRC Joint Workshop "DWQ @ 25"_](https://indico.bnl.gov/event/13576/), Dec 2021
  <iframe src="https://saforem2.github.io/l2hmc-dwq25" title="Accelerated Sampling Methods for Lattice Gauge Theory" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="400" style="border:none;margin-top:1em;margin-bottom:1em;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Training Topological Samplers for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc_talk_ect2021/), [_ML4HEP, on and off the Lattice_](https://indico.ectstar.eu/event/77/contributions/2349/) @ ECT\* Trento, Sep 2021
  <iframe src="https://saforem2.github.io/l2hmc_talk_ect2021" title="Training Topological Samplers for Lattice Gauge Theory" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="400" style="border:none;margin-top:1em;margin-bottom:1em;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**l2hmc-qcd**](https://github.com/saforem2/l2hmc-qcd) at the _MIT Lattice Group Seminar_, 2021

- [**Deep Learning HMC for Improved Gauge Generation**](https://bit.ly/mainz21) to the [_Machine Learning Techniques in Lattice QCD Workshop_](https://bit.ly/mainz21_overview), 2021

- [**Machine Learning for Lattice QCD**](https://slides.com/samforeman/l2hmc-qcd-93bc0c) at the University of Iowa, 2020
  <iframe src="https://slides.com/samforeman/l2hmc-qcd/embed" title="Machine Learning for Lattice QCD" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="400" style="border:none;margin-top:1em;margin-bottom:1em;">
    <p>Your browser does not support iframes.</p>
  </iframe>

- [**Machine learning inspired analysis of the Ising model transition**](https://bit.ly/latt2018) to [_Lattice, 2018_](https://indico.fnal.gov/event/15949/overview)

- **Machine Learning Analysis of Ising Worms** at _Brookhaven National Laboratory_, 2017
Copyright 2023, Sam Foreman